Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The Bay of Bengal receives nitrogen inputs from multiple sources and the potential role of nitrogen-metabolizing microbial communities in the surface water is not well understood. The nitrogen budget estimate shows a deficit of 4.7 ± 2.4 Tg N yr -1 , suggesting a significant role of dissolved organic nitrogen remineralization in fuelling ecosystem processes. Unravelling the process of remineralization leading to increasing concentrations of dissolved inorganic nitrogen (DIN) in coastal ecosystems such as in mangroves require a better understanding of the composition of functional resident bacterioplankton communities. Bacterioplankton communities were elucidated from eight stations along different estuaries spanning west to east of northeast coastal Bay of Bengal to understand the influence of DIN on shaping these communities. The eight stations were differentiated into ‘low’ and ‘high’ DIN stations based on DIN concentration, with five stations with High DIN concentration (>45 μ M) and three stations with Low DIN concentration (<40 μ M). The V3–V4 region of 16S rRNA was amplified and sequenced to elucidate resident bacterioplankton community structure from environmental DNA. Proteobacteria, Bacteroidetes, and Firmicutes were the dominant bacterioplankton phyla across all stations. Nitrogen-fixing groups such as Nitrospirae, Lentisphaerae, Chloroflexi, and Planctomycetes make up about 1% of the bacterioplankton communities. Abundances of Spirochaetes and Tenericutes showed a positive correlation with DIN. Pseudomonadales, Alteromonadales, and Desulfovibrionales were found to distinctly vary in abundance between Low and High DIN stations. Predicted metagenomic profiles from taxonomically derived community structures indicated bacterial nitrate-nitrite reductase to be negatively correlated with prevalent DIN concentration in High DIN stations but positively correlated in Low DIN stations. This trend was also consistent for genes encoding for nitrate/nitrite response regulators and transporter proteins. This indicates the need to delineate functional bacterioplankton community structures to better understand their role in influencing rates and fluxes of nitrogen within mangroves.more » « less
-
Abstract. Trichodesmium is a globally important marine microbe that provides fixednitrogen (N) to otherwise N-limited ecosystems. In nature, nitrogen fixationis likely regulated by iron or phosphate availability, but the extent andinteraction of these controls are unclear. From metaproteomics analysesusing established protein biomarkers for nutrient stress, we foundthat iron–phosphate co-stress is the norm rather than the exception for Trichodesmium colonies in theNorth Atlantic Ocean. Counterintuitively, the nitrogenase enzyme was moreabundant under co-stress as opposed to single nutrient stress. This isconsistent with the idea that Trichodesmium has a specific physiological state duringnutrient co-stress. Organic nitrogen uptake was observed and occurredsimultaneously with nitrogen fixation. The quantification of the phosphate ABCtransporter PstA combined with a cellular model of nutrient uptake suggestedthat Trichodesmium is generally confronted by the biophysical limits of membrane spaceand diffusion rates for iron and phosphate acquisition in the field. Colonyformation may benefit nutrient acquisition from particulate and organicsources, alleviating these pressures. The results highlight that topredict the behavior of Trichodesmium, both Fe and P stress must be evaluatedsimultaneously.more » « less
-
Surface ocean phosphate is commonly below the standard analytical detection limits, leading to an incomplete picture of the global variation and biogeochemical role of phosphate. A global compilation of phosphate measured using high-sensitivity methods revealed several previously unrecognized low-phosphate areas and clear regional differences. Both observational climatologies and Earth system models (ESMs) systematically overestimated surface phosphate. Furthermore, ESMs misrepresented the relationships between phosphate, phytoplankton biomass, and primary productivity. Atmospheric iron input and nitrogen fixation are known important controls on surface phosphate, but model simulations showed that differences in the iron-to-macronutrient ratio in the vertical nutrient supply and surface lateral transport are additional drivers of phosphate concentrations. Our study demonstrates the importance of accurately quantifying nutrients for understanding the regulation of ocean ecosystems and biogeochemistry now and under future climate conditions.more » « less
An official website of the United States government
